UMass Bayesian Inference Engine

Martin D. Weinberg
UMass Astronomy
weinberg@astro.umass.edu

Current team

Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- MDW (Astro)
- Neal Katz (Astro)
- Michael Lavine (Math)
- Houjun Mo (Astro)
- Eliot Moss (CS)

- Byn Choi (CS)
- Joerg Colberg (Astro)
- Mark Fardal (Astro)
- Ilsang Yoon (Astro)
- Lu Yu (Astro)

▶ Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- Multi-terabyte catalogs (2MASS, SDSS, GOODS, ...)
- Bayesian approach

 - Merge data with different attributes
- Computational solution to the inference problem
 - MCMC algorithms
 - Particle filter
- Current packages—Bayespack, BUGS, S-Plus, R
 - Not production oriented
 - Although good for proof of concept

▶ Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- Multi-terabyte catalogs (2MASS, SDSS, GOODS, ...)
- Bayesian approach
 - Incorporate data from multiple catalogs
 - Merge data with different attributes
- Computational solution to the inference problem
 - MCMC algorithms
 - Particle filter
- Current packages—Bayespack, BUGS, S-Plus, R
 - Not production oriented
 - Although good for proof of concept

▶ Motivation

Features
Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- Multi-terabyte catalogs (2MASS, SDSS, GOODS, ...)
- Bayesian approach
 - Incorporate data from multiple catalogs
 - Merge data with different attributes
- Computational solution to the inference problem
 - MCMC algorithms
 - Particle filter
- Current packages—Bayespack, BUGS, S-Plus, R
 - Not production oriented
 - Although good for proof of concept

▶ Motivation

Features
Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- Multi-terabyte catalogs (2MASS, SDSS, GOODS, ...)
- Bayesian approach
 - Incorporate data from multiple catalogs
 - Merge data with different attributes
- Computational solution to the inference problem
 - MCMC algorithms
 - Particle filter
- Current packages—Bayespack, BUGS, S-Plus, R
 - Not production oriented
 - Although good for proof of concept

Motivation

> Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

Status and future

1. Do it fast!

- 2. Do it better!
- 3. Do it right!

Motivation

> Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

Status and future

1. Do it fast!

Apply advanced computational techniques

- Fully parallel implementation (MPI)
- Object-oriented, consumer-producer pipes
- C++ library with front-end parser
- Full serialization and persistence
 - Checkpointing
 - Reuse of posterior distributions
- Visualization tools
- 2. Do it better!
- 3. Do it right!

Motivation

> Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- 1. Do it fast!
- 2. Do it better!
- 3. Do it right!

Motivation

> Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- 1. Do it fast!
- 2. Do it better!
 Platform for future development and statistical research
 - Convergence and posterior characterization
 - Covariance analysis, Laplace approximation
 - Metric Ball Trees (KDE)
 - New computational techniques (Bayes factors)
 - Reversible jump for mixture models
 - New MCMC algorithms
 - Empirical hierarchical priors
 - Tempered differential evolution
- 3. Do it right!

Motivation

> Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- 1. Do it fast!
- 2. Do it better!
- 3. Do it right!

Motivation

> Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

Status and future

- 1. Do it fast!
- 2. Do it better!
- 3. Do it right!

Perform <u>meaningful</u> inference & hypothesis testing on survey datasets

Provide inference beyond χ^2 !

Motivation
Features

→ Do it right!

<u>Killer</u> applications SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- Encourage rigorous model selection
 - Bayes factor, evidence computation
- Mixture models (multiple components)
 - Dimension switching: reversible jump
- General hypothesis testing
 - Without nested models
 - ▶ Test complex hypotheses
- Correlations from pooled posterior distributions
 - \Rightarrow NOT scatter diagrams

Killer applications

Motivation

Features

Do it right!

▶ Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- 1. Star count/isochrone analysis
- 2. Semi-analytic models (SAMS)
 - BIE-SAM
- 3. Galaxy image analysis
 - Galaxy photometric attributes
 - GALaxy PHotometric ATtributes
 - GALPHAT

Semi-analytic models

Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

GALPHAT results

Sizes

Tests

Summary

- BIE-SAM: incorporates features from major groups
- Current practice
 - ▶ Fix some parameters
 - Adjust others by hand to fit observations
 - Chi-by-eye
 - Summary data: luminosity & mass function,Tully-Fisher relation
- Problem: no confidence regions⇒<u>CANNOT</u> achieve goal of rejecting phenomenological models
- Posterior distribution is complex

Semi-analytic models

Motivation
Features
Do it right!
Killer applications
SAMS

Posterior madness GALPHAT intro GALPHAT results Sizes Tests

Status and future

Summary

BIE-SAM: incorporates features from major groups

- Current practice
 - ▶ Fix some parameters
 - Adjust others by hand to fit observations
 - Chi-by-eye
 - Summary data: luminosity & mass function,Tully-Fisher relation
- Problem: no confidence regions⇒<u>CANNOT</u> achieve goal of rejecting phenomenological models
- Posterior distribution is complex

Semi-analytic models

Motivation
Features
Do it right!
Killer applications
SAMS

Posterior madness GALPHAT intro GALPHAT results Sizes Tests

Status and future

Summary

- BIE-SAM: incorporates features from major groups
- Current practice
 - Fix some parameters
 - Adjust others by hand to fit observations
 - Chi-by-eye
 - Summary data: luminosity & mass function,Tully-Fisher relation
- Problem: no confidence regions⇒<u>CANNOT</u> achieve goal of rejecting phenomenological models
- Posterior distribution is complex

Posterior madness: why we need fancy MCMC

• Example: 13 parameter model given galaxy mass function

- BIE-SAM: all but 3 out of 13 components marginalized
- Each panel: star formation (SF)
 vs supernova feedback efficiency
- Steps in gas surface density threshold for SF: large to small
- Bell et al. (2003) K-band galaxy mass function

GALPHAT image analysis: main features

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness

▶ GALPHAT intro
GALPHAT results
Sizes
Tests

Summary

- Multicomponent modeling (typically 12 parameters)
- Background estimation or specification
- Adaptive integration, optimized with two-dimensional interpolation on cumulative distributions
- Rotation by FFT shear algorithm

GALPHAT: main features

Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT results

Sizes

Tests

Summary

- Scientific goals
 - 1. Evaluation of galaxy evolution theories (model selection)
 - 2. Look for correlations between inferred parameters (knowledge discovery)
- Current projects
 - Bulge/disk ratios from 2MASS & SDSS
 - Higher redshift (GOODS, GEMS):
 evolution of bulge/disk ratio, correlation with environment
 - Hypothesis testing with full posterior probabilities

GALPHAT: main features

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes
Tests
Summary

- Scientific goals
 - 1. Evaluation of galaxy evolution theories (model selection)
 - 2. Look for correlations between inferred parameters (knowledge discovery)
- Current projects
 - Bulge/disk ratios from 2MASS & SDSS
 - Higher redshift (GOODS, GEMS):
 evolution of bulge/disk ratio, correlation with environment
 - Hypothesis testing with full posterior probabilities

Motivation **Features** Do it right! Killer applications **SAMS**

GALPHAT intro □ GALPHAT results

Posterior madness

Sizes

Tests

Summary

- 510 2MASS galaxies in SDSS (8.1 < K < 10.23)
- Single and double component Sérsic models
- 25000 converged MCMC samples for every galaxy

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes

Tests

Summary

Status and future

- 510 2MASS galaxies in SDSS (8.1 < K < 10.23)
- Single and double component Sérsic models
- 25000 converged MCMC samples for every galaxy

Bayesian evidence ratio

Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

▶ GALPHAT results

Sizes

Tests

Summary

Status and future

$$H_1/H_0 > 1 \Rightarrow \text{bulge} + \text{disk}$$

$$H_1/H_0 < 1 \Rightarrow \text{single S\'ersic (e.g. elliptical)}$$

Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

▶ GALPHAT results

Sizes

Tests

Summary

Status and future

$$H_1/H_0 > 1 \Rightarrow \text{bulge} + \text{disk}$$

$$H_1/H_0 < 1 \Rightarrow \text{single S\'ersic (e.g. elliptical)}$$

Bulge radius vs Sérsic index

Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

▶ GALPHAT results

Sizes

Tests

Summary

Status and future

$$H_1/H_0 > 1 \Rightarrow \text{bulge} + \text{disk}$$

$$H_1/H_0 < 1 \Rightarrow \text{single S\'ersic (e.g. elliptical)}$$

Bulge/Total vs Sérsic index

Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

▶ GALPHAT results

Sizes

Tests

Summary

Status and future

$$H_1/H_0 > 1 \Rightarrow \text{bulge} + \text{disk}$$

$$H_1/H_0 < 1 \Rightarrow \text{single S\'ersic (e.g. elliptical)}$$

Bulge/Total vs Mag

Motivation

Features

Do it right!

Killer applications

SAMS

Posterior madness

GALPHAT intro

▶ GALPHAT results

Sizes

Tests

Summary

Status and future

$$H_1/H_0 > 1 \Rightarrow \text{bulge} + \text{disk}$$

$$H_1/H_0 < 1 \Rightarrow \text{single S\'ersic (e.g. elliptical)}$$

Bulge/Total vs size ratio

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results

Tests

Summary

Sizes
 Sizes

Status and future

Size correlations

Mag vs R_e for single component

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes

Tests

Summary

Status and future

Size correlations

Mag vs R_e for bulges (two component)

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results

Tests

Summary

Sizes
 Sizes

Status and future

Size correlations

Mag vs R_e for disks (two component)

Motivation
Features
Do it right!

Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes

Tests
Summary

Status and future

Synthetic image tests

Mag vs R_e Input (points) and inferred posterior (contours)

GALPHAT: summary

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes
Tests

▶ Summary

- Quantitative inference of galaxy parameters
 - Classification with confidence!
 - Quantification of morphological trends
- Easily extended to more general families
- Ultimately: non-parametric families⇒ knowledge discovery

GALPHAT: summary

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes
Tests
Summary

- Quantitative inference of galaxy parameters
 - Classification with confidence!
 - Quantification of morphological trends
- Easily extended to more general families
- Ultimately: non-parametric families⇒ knowledge discovery

GALPHAT: summary

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes
Tests
Summary

- Quantitative inference of galaxy parameters
 - Classification with confidence!
 - Quantification of morphological trends
- Easily extended to more general families
- Ultimately: non-parametric families
 - ⇒ knowledge discovery

Current status and Future projects

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes
Tests

Status and future

Summary

Current

- Listed on Astro Stat web site
- Project web site: www.astro.umass.edu/~weinberg/bie
- 2010 release including persistence and standalones
- Interim releases now, contact me!

Current status and Future projects

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes
Tests
Summary

> Status and future

Current

- Listed on Astro Stat web site
- Project web site: www.astro.umass.edu/~weinberg/bie
- 2010 release including persistence and standalones
- Interim releases now, contact me!

Future

- GALPHAT: CUDA/OpenCL design
- Kinematic/photometric mass estimation ("rotation curves")

Current status and Future projects

Motivation
Features
Do it right!
Killer applications
SAMS
Posterior madness
GALPHAT intro
GALPHAT results
Sizes
Tests
Summary

> Status and future

Current

- Listed on Astro Stat web site
- Project web site: www.astro.umass.edu/~weinberg/bie
- 2010 release including persistence and standalones
- Interim releases now, contact me!

Future

- GALPHAT: CUDA/OpenCL design
- Kinematic/photometric mass estimation ("rotation curves")

Done!